Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 72769

Overidentifying restriction in system GMM

$
0
0
Hi,

I'm using the -xtabond2- command to estimate a panel data growth model, but I have some problems with exactly how to use it.
I have read Roodman's paper on the estimator, but unfortunately I get problems with the Hansen test of overidentifying restrictions. The p-value seems to be 0 no matter how I specify the model. I have experimented both with the use of "collapse", the number of lags included and changes to which variables are treated as endogenuos, exogenous and predetermined.

So I was wondering if any of you might have an idea of what generally causes this problem. I have found several articles that use the approach on similar data without problems, but unfortunately they don't state their exact Stata codes. The code I use and the estimates I get look like this:

:
. xtabond2 lev llev eb dp gr si ag indmed_lis i.year if listedf=="Listed", gmm(llev, lag(1 5) collapse) gmm(eb dp gr si, lag(2 5) collapse) iv(ag) iv(indmed_lis i.year) twostep robust
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
  Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: id                              Number of obs      =     28484
Time variable : year                            Number of groups   =      3466
Number of instruments = 37                      Obs per group: min =         5
Wald chi2(16) =   4139.68                                      avg =      8.22
Prob > chi2   =     0.000                                      max =         9
------------------------------------------------------------------------------
             |              Corrected
         lev |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        llev |   .7483798   .0236755    31.61   0.000     .7019766     .794783
          eb |  -.0469139    .061858    -0.76   0.448    -.1681534    .0743257
          dp |   .1397141   .1906327     0.73   0.464    -.2339191    .5133473
          gr |   .0506578   .0382378     1.32   0.185     -.024287    .1256026
          si |  -.0078096   .0080076    -0.98   0.329    -.0235041     .007885
          ag |   .0122202   .0060876     2.01   0.045     .0002888    .0241516
  indmed_lis |   .1778161   .0267415     6.65   0.000     .1254038    .2302285
             |
        year |
          6  |          0  (empty)
          7  |   .0177745   .0078789     2.26   0.024     .0023322    .0332168
          8  |   .0491287    .013048     3.77   0.000     .0235551    .0747024
          9  |   .0081308   .0133151     0.61   0.541    -.0179663    .0342279
         10  |  -.0037079   .0095881    -0.39   0.699    -.0225002    .0150843
         11  |    .018332   .0120539     1.52   0.128    -.0052931    .0419572
         12  |   .0213359   .0126224     1.69   0.091    -.0034036    .0460753
         13  |   .0166446   .0126895     1.31   0.190    -.0082264    .0415155
         14  |   .0154747   .0108141     1.43   0.152    -.0057206      .03667
             |
       _cons |   .0499256   .0763906     0.65   0.513    -.0997973    .1996484
------------------------------------------------------------------------------
Instruments for first differences equation
  Standard
    D.(indmed_lis 6b.year 7.year 8.year 9.year 10.year 11.year 12.year 13.year
    14.year)
    D.ag
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    L(2/5).(eb dp gr si) collapsed
    L(1/5).llev collapsed
Instruments for levels equation
  Standard
    indmed_lis 6b.year 7.year 8.year 9.year 10.year 11.year 12.year 13.year
    14.year
    age_ln
    _cons
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    DL.(eb dp gr si) collapsed
    D.llev collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -17.83  Pr > z =  0.000
Arellano-Bond test for AR(2) in first differences: z =   0.20  Pr > z =  0.839
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(20)   = 273.33  Prob > chi2 =  0.000
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(20)   = 112.45  Prob > chi2 =  0.000
  (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Hansen test excluding group:     chi2(15)   =  55.07  Prob > chi2 =  0.000
    Difference (null H = exogenous): chi2(5)    =  57.38  Prob > chi2 =  0.000
  gmm(llev, collapse lag(1 5))
    Hansen test excluding group:     chi2(14)   =  33.54  Prob > chi2 =  0.002
    Difference (null H = exogenous): chi2(6)    =  78.91  Prob > chi2 =  0.000
  gmm(eb dp gr si, collapse lag(2 5))
    Hansen test excluding group:     chi2(0)    =  19.72  Prob > chi2 =      .
    Difference (null H = exogenous): chi2(20)   =  92.73  Prob > chi2 =  0.000
  iv(ag)
    Hansen test excluding group:     chi2(19)   = 112.44  Prob > chi2 =  0.000
    Difference (null H = exogenous): chi2(1)    =   0.01  Prob > chi2 =  0.933
  iv(indmed_lis 6b.year 7.year 8.year 9.year 10.year 11.year 12.year 13.year 14.year)
    Hansen test excluding group:     chi2(11)   =  25.00  Prob > chi2 =  0.009
    Difference (null H = exogenous): chi2(9)    =  87.45  Prob > chi2 =  0.000
I would be very thankful for any advice or thoughts on my approach.

Best, Sebastian

Viewing all articles
Browse latest Browse all 72769

Trending Articles