Quantcast
Channel: Statalist
Viewing all 72832 articles
Browse latest View live

should I make bootstrapping the SE of indirect effect when using gsem?

$
0
0
should I make bootstrapping the SE of indirect effect when using gsem ?

How to assign rank according to the corresponding values

$
0
0
Dear All

I wanted to know how we can assign ranks a multiple choice questions based on the values of the categories.

My question 81 is asking the enumerators to arrange and number in a ascending order your expenditure heads, Starting with the lowest to the highest and after ranking they were asked to fill in the amount. But the rank and the amount does not match in many. For example in the first row Q81_3 is ranked 1 (lowest) and Q81_8 is ranked the second lowest. But if you look at the amount exp_annual3 is 1000 whereas exp_annual8 is only 500. There is a limit to how many variables can be specifed with dataex so I took only 6 in my example which is why some ranks are saying more than 6. But I wanted to know for each row how can I rank the variable's Q81_1 to Q81_6 according to the values in exp_annual1- exp_annual6. SOme exp will be missing for some HH beacuse each Household willonly select the expenditure that they incur.

copy starting from the next line ------------- ---------
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input byte(q81__1 q81__2 q81__3 q81__4 q81__5 q81__6) long(exp_annual1    exp_annual2    exp_annual3    exp_annual4    exp_annual5    exp_annual6)
7  5  1  6  0  0  7000 1500  1000  4500    .   .
1  0  0  3  0  0 15000    .     .  6500    .   .
5  2  0  4  0  1  5000  700     .  4700    .  42
8  7  0  9  3  2  2000  150     .  9000   50 125
5  4  0  0  0  0  6000 1500     .     .    .   .
6  5  0  4  0  0  5000  200     .  2000    .   .
2  1  3  0  0  0  1500  300  1000     .    .   .
6  0  3  5  0  1 10000    .  1000 10000    . 184
7  4  0  6  0  1  4000  400     .  3500    . 100
4  0  0  3  0  1 10000    .     .  9000    . 285
1  2  0  0  0  0  3500  720     .     .    .   .
2  0  3  0  0  0 10000    .  4200     .    .   .
5  4  0  0  3  2 10000  600     .     .   90  42
4  3  0  0  0  2  5000  585     .     .    . 100
1  2  3  4  5  6  7000  600   800  9000  200 200
3  5  0  4  1  0  4000  720     .  6500  200   .
5  0  4  0  0  2 10000    .  1000     .    . 100
3  2  0  0  0  0 10000  700     .     .    .   .
5  3  4  0  0  1 10000  650  1500     .    . 200
5  0  3  2  0  0 10000    .  5000  4000    .   .
5  3  0  4  0  2 12000  650     .  6500    . 150
6  3  0  0  0  1  6000 1200     .     .    . 600
7  3  6  8  0  1  5000  780  2500  8500    .  70
2  1  0  0  3  4  2000  200     .     .  100  50
3  0  1  0  0  0 20000    .   500     .    .   .
6  4  0  0  0  1  6000  780     .     .    . 500
5  0  0  4  0  2  6000    .     .  5000    . 200
3  0  2  0  0  0  8000    .  2000     .    .   .
6  3  0  7  0  1 20000 1560     . 20000    . 300
7  4  3  8  0  1  5000  780   500  7500    . 100
3  2  1  0  0  4  8000  800  2000     .    . 400
2  0  3  0  0  0 14000    . 10000     .    .   .
5  0  3  4  1  0  7000    .  5000  4500  150   .
2  1  7  0  0  0  2000  300  1500     .    .   .
5  0  3  0  0  1 10000    .  3000     .    . 200
6  3  2  4  0  0 15000 1000  1500  4800    .   .
8  0  2  0  0  0 10000    .  5500     .    .   .
5  0  4  3  0  2  6000    .  5000   600    . 100
6  3  0  2  0  0  7000  700     .  1900    .   .
4  0  0  3  0  1  8000    .     .  5000    . 150
7  3  2  6  0  1  9000  950   300  5000    . 100
3  2  0  0  0  0  5000  700     .     .    .   .
8  2  1  7  0  0  5000  780  1000  4000    .   .
5  2  4  3  0  0  3000  500  1000  1000    .   .
3  0  0  0  0  2 15000    .     .     .    . 200
1  2  0  3  0  4  5000  720     .  8500    . 150
4  3  2  1  0  0 11000 1000  3000  7000    .   .
1  0  2  3  0  0  6000    .  1500 12500    .   .
5  3  0  4  0  2 25000  650     .  6000    . 150
4  2  0  3  0  0  4700  800     .   850    .   .
5  3  4  0  1  0  4000  800  1500     .  130   .
6  3  0  5  0  1 10000  700     .  7500    . 100
5  3  4  0  0  1  5000  650  1000     .    . 100
5  4  0  0  2  1  1500  600     .     .  100  42
4  0  0  2  0  0  8000    .     .  2300    .   .
1  2  0  3  4  5 20000  600     . 10000  100 100
1  2  3  0  4  5  3000  300  1000     .  100 150
5  3  4  0  0  1  6500  700  6000     .    .  35
3  2  0  6  0  0 15000 1500     . 13000    .   .
6  3  2  4  0  1 12000  900   600  7600    . 100
4  3  2  0  0  0  6000 1400   500     .    .   .
8  7  6  0  1  0 10000  670  1000     .  500   .
5  0  0  4  0  0  7000    .     .  1780    .   .
1  2  3  0  0  0  3000  720  3000     .    .   .
15 14 13 12 10 11  5000  720  2000 11000  100 200
3  0  0  0  2  0  5000    .     .     . 1000   .
5  3  0  0  1  0  4000  800     .     .  150   .
7  1  0  6  0  0 10000  350     .  5000    .   .
6  5  4  3  0  0  6000 1500  7000  8000    .   .
3  2  1  0  4  0  8000  800  1500     .  100   .
5  3  0  2  0  0  4000 1000     .   800    .   .
4  0  0  3  0  0  5000    .     .  2000    .   .
4  0  3  0  0  0  7000    .  2000     .    .   .
3  2  0  0  0  0  8000  650     .     .    .   .
8  4  5  7  0  1  7000  780  2500  4000    . 100
5  0  3  4  1  0  6000    .  4000  5000  200   .
4  0  0  2  3  0 20000    .     . 11000  100   .
4  3  2  0  1  0  4000  150  4000     .  100   .
5  4  0  0  2  1  5000  750     .     .  100  42
6  0  0  5  1  2  6500    .     .  5000  150 200
6  0  5  4  0  0  6000    .   500   500    .   .
5  3  0  4  0  1  2000  700     .  8000    .  50
3  0  0  4  0  1 13000    .     . 20000    . 300
2  1  0  3  0  0  5000  650     .  7500    .   .
6  3  0  0  1  5 13000  600     .     .  150 150
5  3  0  4  0  1 25000  800     .  4000    .  60
2  7  5  4  0  0  8000  350   800   900    .   .
5  0  3  4  0  1 16000    .  3000 14500    . 200
2  1  3  4  5  0  5000  300  3000  6000  100   .
1  2  3  4  5  6 25000  900  1500 11500   50 240
4  2  0  1  0  0  3000  700     .  2000    .   .
1  2  0  3  4  0 10000  900     .  6500  200   .
9  6  7  8  5  1 10000  700  2000  8200  200 100
7  3  0  6  0  1  6000  250     .  2000    . 150
1  2  3  0  4  0 10000  300  6000     . 1000   .
4  0  0  0  0  2  5000    .     .     .    . 100
6  3  4  5  0  0  7000  450   800  2021    .   .
3  0  0  0  1  0  4500    .     .     .  150   .
4  0  0  2  0  0  8000    .     .  7000    .   .
6  3  5  0  0  1  7000  780  1500     .    . 250
end

Thank you in advance

Multiline for panel data

$
0
0
Hi all,

I'm working with panel data including 154 banks of 14 countries between 2005-2019. I would like to plot the development of their ROAA, ROAE, RORWA, and NIM throughout the years with the mean values (averaging by entities). Because the unit scale for each indicator is different, I decided to plot 4 different graphs that have the same y-axis (Year).

I have tried:
Code:
egen mROAA = mean(ROAA), by(Bank_name)
egen mROAE = mean(ROAE), by(Bank_name)
egen mRORWA = mean(RORWA), by(Bank_name)
egen mNIM = mean(NIM), by(Bank_name)

multiline mROAA mROAE mRORWA mNIM Year, recast(connected) ///
mylabels("ROAA" "ROAE" "RORWA" "NIM")
following this post
HTML Code:
https://www.statalist.org/forums/forum/general-stata-discussion/general/1401776-multiline-now-available-on-ssc
by Nick.

However, I got the error
Code:
varlist not allowed
.

Anyone could point out which step that I've got wrong?

Thanks in advance!

Sang

Panel Data (Longitudinal) - STATA codes for treatment/control groupings

$
0
0
Hi all

Using the Wooldridge data happiness2.dta which looks at life satisfaction/happiness and marriage. I am looking for guidance on how to separate treatment (those who have ever been married) and control groups (those never married). The data provided includes observations from c11,000 units/IDs, with between 2 and 26 survey response years per ID - its unbalanced. It includes a binary indicator for marriage (1=married, 0=unmarried). However, some IDs have become married between survey years (treatment) and some have remained unmarried (control). Can you advise on the best approach in STATA to separating these groups?

Other indicators available include:

marry (currently married=1, unmarried=0)
yrsmarried (length of marriage)
pynr (person-year ID)
pycount (length of participation in study)
happy (life satisfaction 0=worst, 10=best)

Code:
 bysort id(year): gen changed = (marry[0] !=marry[_N]
...is not providing correct results.

categorical variable

$
0
0
Hi, I am a beginner with stata, please I need help, is it possible to run my categorical variables (outcomes) in groups. example
I have an outcome that has 3 groups. a b c generalized as A. (for logistic regression )
A
a (
b (
c (

Dropping Countries from the sample / Drop command

$
0
0
Hello everyone,

I have a panel of 130 countries and i am trying to estimate the threshold level above which financial development ( measured by liquid liabilities to GDP) has a negative effect on economic growth. I have one country in my sample that seriously biases my results and leads to inconsistent estimates (Liquid liabilities to GDP equals 800% of GDP in some years). I tried to drop it from my sample but Stata returned an error. I used the following command:

. drop Country_ if Country==Luxembourg
Luxembourg not found
r(111);

Can somebody tell me what am I doing wrong?

Many thanks!

A linguistic question about relative and absolute changes

$
0
0
It is common in this Forum to encounter questions that relate to relative and absolute changes and the associated terminology when the changing variable is itself a percentage. In English, a change from 50% to 55% is a relative change of 5/50 = 10%, and is an absolute change of 55-50 = 5 percentage points.

Because I am by nature pedantic, I frequently respond to posts that involve this issue. As often as not, the person posing the question appears to be a native speaker of English. But a substantial number of these questions also arise in posts where the author appears to be using English as a second language. It dawns on me that the convention that a relative change is percent, and an absolute change is percentage points may be language specific. And I now worry that in pounding on this terminology, when the reader back-translates my advice into his or her own tongue, the results may be quite incorrect or confusing. I really don't know. I have at least light conversational ability in several other languages, but even in the one I speak almost fluently, I don't know the terms used for these.

The convention is clearly an arbitrary one. There is no reason I can see why it might not have been the rule that percent change means absolute change and some other term is adopted for relative change. For that matter, if I were "redesigning" the English language I would banish the term "percent change" altogether and decree that one always speak specifically either of percent absolute change or percent relative change.

So I have two questions.

1. How are these distinctions handled in other languages commonly in use on this Forum? Are they consistent with how English does it? If not, how difficult is it to translate from the English terminology into these other languages?

2. How did the current English convention come to be?

I realize this is a little off-topic for this forum, as it is neither a question about Stata nor really about statistics. I hope nobody objects.

if condition

$
0
0
Hi everyone,

I would like to create a variable like the following:

Code:
gen CAR_20 = AR if distance==-5
replace CAR_20 = CAR_5_20[_n-1]+AR if distance >-5 & distance<=20

It works well, but if AR in distance==-5 is missing, than the whole variable is missing. How could I tell stata that I want CAR_20 = AR if distance ==-5, or, if AR in -5 is missing, then -4 and so on?

Thanks

Andrea

Instrumenting an specific variable with xtabond

$
0
0
Dear all,

I am trying to estimate a dynamic panel model where I would like to instrument one of the regressors with an external instrument (in addition to those instruments provided in this methodology that uses lags on levels and differences). In xtabond there is the possibility to use inst(z) for external instruments, but to my understanding, z is applied to all the regressors and not just the one I would like to instrument with this specific z.

Any suggestion?

Thank you in advance.

Graph combine ignores specified xlab values

$
0
0
I am using graph combine to group time series plots.

As you know dates on the x-axis are special, so I specify the manually (the same for all sub-graphs)
Code:
  xlab(`=d(29feb2020)' `=d(01may2020)' `=d(01jul2020)' `=d(01sep2020)' `=d(01nov2020)' `=d(01jan2021)' `=d(28feb2021)', format(%td) ang(45))
For each single graph this produces the axis labels how I want them. However, when I combine it using

Code:
graph combine lux switz italy ser, 
    ysize(25) xsize(45) xcommon
    graphregion(color(white))
It does display the correct angle, but not the dates I provided (instead it gives the dates I would get without manual entry). Did you experience this too and have an idea where it could come from?

handling missing data

$
0
0
I have a panel data set, consisting of 138 countries, 70 years. I want to use it but would want to drop off the first 20 years as most of the countries have missing data. How do I go about that?

3 way fixed effects vs triple difference estimator

$
0
0
Hi everyone,

I have a conceptual question: is a 3 way fixed effects regression equivalent to running a triple difference estimator? Are there any resources to learn more about this?

Many thanks!

Running power analysis with more than two experimental groups

$
0
0
Hi all. I want to run a power analysis to verify the necessary sample size to adequately run an experiment with four experimental conditions (3 experimental groups plus a control group). It is not a factorial experiment.

Type of power analysis: a priori
Statistical test: ANOVA fixed effects, omnibus, one-way
Effect size: 0.1
alpha error prob: .05
1-beta error prob: .95
Number of groups: 4

Does Stata have a command to run a power analysis in this case?

Thank you

In mixed-effect model, how to display individual random slope/coefficient in the dataset

$
0
0
Hi Stata users,
I am using a mixed-effect model with random intercept and random slope.
Stata code like: mixed weight week || id: week.
I am interested to find the random slope for each individual subject (id) in the dataset. Can anyone please let me the code to display the random slope in the data?
Thanks in advance,
Nelufa

Export Frequency table

$
0
0
Hi,

I'd like to export a frequency (one-way) table using svyset. The table would include:
* the number of observations
* the proportion
* the number of weighted observation
* the proportion of weighted observation.
I'm able to generate the four matrices but am struggling to combine them into a single matrix, as well as including the region names (not the numeric value)

Code:
    webuse nhanes2
    svyset psu [pweight=finalwgt], strata(strata)
    svy: tabulate region,  count se
    
    local row=e(r)
    local tot_obs=e(N)
    mat b1=e(b)
    
    * Weighted proportions
    mat wp1=e(Prop)
    * obs
    mat obs=e(Obs)
    mata: sum(st_matrix("e(b)"))
    
    * Weighted obs
    matrix weighted_obs=J(`row', 1, 0)
    forvalues i=1/`row' {
        matrix weighted_obs[`i', 1]=b1[1, `i']
    }
    
    * Proportions
    matrix prop=J(`row', 1, 0)
    forvalues i=1/`row' {
        matrix prop[`i', 1]=round(100*obs[`i', 1]/`tot_obs', 0.01)
    }    
    
    * Weighted Proportions
    matrix weighted_prop=J(`row', 1, 0)
    forvalues i=1/`row' {
        matrix weighted_prop[`i', 1]=round(100*wp1[`i', 1], 0.01)
    }        
    
    * Obs
    mat li obs
    * Proportion
    mat li prop
    * Weighted obs
    mat li weighted_obs
    * Weighted prop
    mat li weighted_prop
Any suggestion on how to do it, either to export in Latex or Word format? Asdoc and putdocx do not allow pweights. Moreover, I would like to loop the above code over a significant number of variables so would like to automatize the process.

Thank you

Local Moran's I test

$
0
0
The estat moran postestimation command does not work with spxtregress command. Does any one know how to test and map local moran's I in Stata:

example data below:

Code:
copy https://www.stata-press.com/data/r16/homicide_1960_1990.dta .
copy https://www.stata-press.com/data/r16/homicide_1960_1990_shp.dta .
use homicide_1960_1990, clear
xtset _ID year
spset

*Create a contiguity weighting matrix with the default spectral normalization
spmatrix create contiguity W if year == 1990, replace

*Fit a spatial autoregressive random-effects model
spxtregress hrate ln_population ln_pdensity gini i.year, re dvarlag(W)
estat moran, errorlag(W) // this gives an error

Local Moran's I test

$
0
0
The estat moran postestimation command does not work with spxtregress command. Does anyone know how to test and map local moran's I in Stata:

example data below:

Code:
copy https://www.stata-press.com/data/r16/homicide_1960_1990.dta .
copy https://www.stata-press.com/data/r16/homicide_1960_1990_shp.dta .
use homicide_1960_1990, clear
xtset _ID year
spset

*Create a contiguity weighting matrix with the default spectral normalization
spmatrix create contiguity W if year == 1990, replace

*Fit a spatial autoregressive random-effects model
spxtregress hrate ln_population ln_pdensity gini i.year, re dvarlag(W)
estat moran, errorlag(W) // this gives an error

Creating a Variable to Measure Recent Performance

$
0
0
I am trying to count the number of times an NFL has won a game in their last four games. I already have a dummy variable representing the outcome of the game. I think the idea would be to generate the id for each game after sorting them in order by team and game time and then count the dummy variable outcomes from the last four observations. I'm not entirely sure how to go about the syntax/loop as I'm not super familiar doing these things in stata. Let me know if any more information is needed. I would probably have to drop the first four games in each season as well.

Help with coding this logic

$
0
0
Hello,
My data looks like this
Code:
fips2010    year    cert    acq_cert    uno
51650010800    2010    11583    34837    1
51760030200    2010    11583    34837    1
54005958400    2010    34837    34837    
54043955600    2010    34837    34837    
54005958800    2010    34837    34837    
54045956900    2010    34837    34837
I wanna be able to look up the two separate fips2010 when uno == 1 (that is fips numbers 51650010800 and 51760030200) in the block of fips when uno is missing. In other words I want to search for the 1st two fips one by one against the next 4 fips and see if there is a match or not. In case of match, I wanna generate a variable -- match == 1, cannot figure out how to go about doing it

The data is sorted on acq_cert and year and uno == 1 if acq_cert != cert and uno == . if acq_cert == cert

_IDS in weighting matrix do not match _IDS in estimation sample

$
0
0
I'm trying to run a Moran's I test on my data but I keep getting this error. Here is my code and data below. Can anyone please help?
spmatrix clear
spmatrix create idistance W if year ==2016, replace
regress manf_pc_ff Rents_GDP_nb
estat moran, errorlag(W)
Error: IDs in weighting matrix W do not match _IDs in estimation sample
There are places in W not in estimation sample and places in estimation sample not in W.




----------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input str59 country int year long _ID double(_CX _CY) float(Neighbor_population manf_pc_ff Rents_GDP_nb Migrants_pp Imports_GDP Rents_GDP)
"Algeria"                  1996   4   2.676869982345495  28.155623766186512   8850334  4526.076  9.501017  1.469662   .0007634131    12.39737
"Algeria"                  1997   4   2.676869982345495  28.155623766186512  11303946  4526.076  8.751779  1.598385 1.8598734e-06   11.291486
"Algeria"                  1998   4   2.676869982345495  28.155623766186512   1681863 1761.4027  7.991744   .746421  3.475715e-06    6.566297
"Algeria"                  1999   4   2.676869982345495  28.155623766186512  10414433  1236.165  6.610361  .6066885  5.769097e-06    9.017069
"Algeria"                  2000   4   2.676869982345495  28.155623766186512   3393409  1236.165  9.913099  1.830486  .00002545021   15.307203
"Algeria"                  2001   4   2.676869982345495  28.155623766186512  16934220  1236.165  9.085542  .5818813 .000024008114    14.12193
"Algeria"                  2002   4   2.676869982345495  28.155623766186512  21602472  1236.165 12.518338   .644254  .00010100015   14.069468
"Algeria"                  2003   4   2.676869982345495  28.155623766186512   1540640  1236.165 13.394665  1.033551  .00007591845   16.304386
"Algeria"                  2004   4   2.676869982345495  28.155623766186512  10847002  1236.165 14.695156  .9091178  .00005918097   18.196198
"Algeria"                  2005   4   2.676869982345495  28.155623766186512  10635244   1950.91 17.960484  .6038817  .00002242149    24.39616
"Algeria"                  2006   4   2.676869982345495  28.155623766186512   5635859   1950.91  21.09472  .5429423   .0008050447   26.534433
"Algeria"                  2007   4   2.676869982345495  28.155623766186512  17795192   1950.91  23.52048  .4908597   .0009190447    25.01032
"Algeria"                  2008   4   2.676869982345495  28.155623766186512   3802803  1964.865  26.05785  .9432834  .00003911596    27.04177
"Algeria"                  2009   4   2.676869982345495  28.155623766186512   7548433  674.4952 17.755713 .53244996  .00014366036   18.953701
"Algeria"                  2010   4   2.676869982345495  28.155623766186512  20479716 1711.1956  22.44304  .9969134  .00010707934    19.99752
"Algeria"                  2011   4   2.676869982345495  28.155623766186512   1016100 1711.1956  22.29719 .56222767   .0016875453   23.587303
"Algeria"                  2012   4   2.676869982345495  28.155623766186512   4220450  1473.514  21.17175  1.431636  .00020204144   22.987114
"Algeria"                  2013   4   2.676869982345495  28.155623766186512   2865637  1473.514 15.603875  .8952893   .0002164117     21.3234
"Algeria"                  2014   4   2.676869982345495  28.155623766186512   1496185  1473.514 12.823918  .8289234   .0007887898   19.292645
"Algeria"                  2015   4   2.676869982345495  28.155623766186512   9837571 2019.2263  11.07809  .7223982  .00005280594   11.990244
"Algeria"                  2016   4   2.676869982345495  28.155623766186512   1829675 2019.2263  11.07809  .6918197  .00026967164    16.50982
"Angola"                   1996   8   17.54875399673365 -12.296463111860687  24249130  29.47187 23.611984  .4798474  .00006291911    47.57884
"Angola"                   1997   8   17.54875399673365 -12.296463111860687  58453684 126.54377 23.650045  .1773713  .00006291911    42.79438
"Angola"                   1998   8   17.54875399673365 -12.296463111860687   4145391  630.0487 18.084288  .7111751  .00006291911    25.83629
"Angola"                   1999   8   17.54875399673365 -12.296463111860687  84068088  630.0487 20.368923  .2290232  .00006291911    49.55986
"Angola"                   2000   8   17.54875399673365 -12.296463111860687   2118874  630.0487  19.10101  .5527683  .00006291911     61.9567
"Angola"                   2001   8   17.54875399673365 -12.296463111860687  13215139  630.0487 18.008947  .4689616  .00006291911    45.59174
"Angola"                   2002   8   17.54875399673365 -12.296463111860687   1763859  88.23344 17.217104  .3276423  .00006291911    38.35699
"Angola"                   2003   8   17.54875399673365 -12.296463111860687  28403852  88.23344  19.54555 .50254697  .00006291911   36.654045
"Angola"                   2004   8   17.54875399673365 -12.296463111860687   4011486  88.23344 20.637135  .9119723  .00006291911    45.19068
"Angola"                   2005   8   17.54875399673365 -12.296463111860687   2632345  88.23344  23.68478 1.1242851  .00006291911    59.90822
"Angola"                   2006   8   17.54875399673365 -12.296463111860687   8656486  88.23344  26.97332    .97632  .00006291911    54.13524
"Angola"                   2007   8   17.54875399673365 -12.296463111860687  12502958  81.02455 27.271675  .8422908  .00006291911    51.32109
"Angola"                   2008   8   17.54875399673365 -12.296463111860687  17351822  443.4748 26.785036  1.085604  .00006291911    58.05639
"Angola"                   2009   8   17.54875399673365 -12.296463111860687  20564068  443.4748  22.46705  .9410384   .0040813456   28.122154
"Angola"                   2010   8   17.54875399673365 -12.296463111860687    773422  443.4748  27.18687 3.2182405   .0005850176    39.03144
"Angola"                   2011   8   17.54875399673365 -12.296463111860687   7372837  443.4748  30.82738 2.4810224   .0011236774    44.50494
"Angola"                   2012   8   17.54875399673365 -12.296463111860687   1794571  443.4748 29.585514  6.188809   .0011236774    41.55948
"Angola"                   2013   8   17.54875399673365 -12.296463111860687   1629209  443.4748 26.321453 4.0693474   .0011236774     34.8921
"Angola"                   2014   8   17.54875399673365 -12.296463111860687  25663592  315.8781 23.740183  6.864351  .00009489132   27.532494
"Angola"                   2015   8   17.54875399673365 -12.296463111860687    896266  764.5181 18.515253  7.316497  .00002378095   11.251415
"Angola"                   2016   8   17.54875399673365 -12.296463111860687  10971698  764.5181 18.515253  2.592123  .00002378095    7.915795
"Benin"                    1996  29  2.3398501727818135   9.660140534442299   5343019   15.5879 18.242311 1.9720035 .000016301196    8.246718
"Benin"                    1997  29  2.3398501727818135   9.660140534442299   5989004  188.2109 17.411388 3.9486234  5.800144e-06    7.962859
"Benin"                    1998  29  2.3398501727818135   9.660140534442299   4829288  47.05788 13.575778   4.39362 .000019344665     7.48092
"Benin"                    1999  29  2.3398501727818135   9.660140534442299   3486326  47.05788  11.71843  1.750362   .0003915379   4.3020644
"Benin"                    2000  29  2.3398501727818135   9.660140534442299 185960288 219.65837 15.493333 2.1436284  1.645258e-06    4.466275
"Benin"                    2001  29  2.3398501727818135   9.660140534442299  14689725 20.498995 13.203022  4.412729   .0010427071    4.205236
"Benin"                    2002  29  2.3398501727818135   9.660140534442299  85766400 20.498995 11.366695  3.930797    .002970367   4.5202656
"Benin"                    2003  29  2.3398501727818135   9.660140534442299   2720839  29.86207 13.546003  5.326047   .0011095933    5.674131
"Benin"                    2004  29  2.3398501727818135   9.660140534442299   5330639  203.0331 12.675787  3.228534  .00012891361   4.2822847
"Benin"                    2005  29  2.3398501727818135   9.660140534442299  48032936  47.78551 14.026616  7.454515   .0006365182   4.1527042
"Benin"                    2006  29  2.3398501727818135   9.660140534442299   5920359  47.78551  12.95055  8.329845    .004781516   4.1706467
"Benin"                    2007  29  2.3398501727818135   9.660140534442299   5197031 177.69476  14.35436  5.155968   .0005831367    4.957317
"Benin"                    2008  29  2.3398501727818135   9.660140534442299   3802803 177.69476 16.496635  6.759823     .01367666    5.010157
"Benin"                    2009  29  2.3398501727818135   9.660140534442299   9816588 177.69476 12.797234  3.231226     .02009596    5.086227
"Benin"                    2010  29  2.3398501727818135   9.660140534442299  54717040 177.69476  14.06555  2.843286    .014037357    4.687139
"Benin"                    2011  29  2.3398501727818135   9.660140534442299  15141098 303.82907 18.643568  7.226935   .0004749757    4.765978
"Benin"                    2012  29  2.3398501727818135   9.660140534442299  58665808  20.65209  20.08877 3.5694966    .002522477    5.351275
"Benin"                    2013  29  2.3398501727818135   9.660140534442299   9826598 16.956762 17.824038 12.590753    .016578557    4.805236
"Benin"                    2014  29  2.3398501727818135   9.660140534442299   7340905  477.1121 15.518964  13.49253   .0006979496   4.6448903
"Benin"                    2015  29  2.3398501727818135   9.660140534442299   6530819 18.114723 16.283562  11.76372     .01175899    6.726689
"Benin"                    2016  29  2.3398501727818135   9.660140534442299 171765776 18.114723 16.283562  5.344246     .02102789    11.15268
"Botswana"                 1996  35   23.81374954991846   -22.1880523360801  14465121 255.78062  5.921973  9.640889   .0041855955    .9700951
"Botswana"                 1997  35   23.81374954991846   -22.1880523360801  30993758  899.8796  5.102481    5.3807   .0041855955    .8713127
"Botswana"                 1998  35   23.81374954991846   -22.1880523360801  25836888   6.01067 3.8940625  7.189121   .0041855955    .6645786
"Botswana"                 1999  35   23.81374954991846   -22.1880523360801  45571272  476.7619  2.705888  3.376134   .0041855955    .4190151
"Botswana"                 2000  35   23.81374954991846   -22.1880523360801   3260650 225.61467  3.145004   3.39817   .0041855955   1.4446483
"Botswana"                 2001  35   23.81374954991846   -22.1880523360801   1516958  830.0626  3.030259  7.734243    .002342174   .57508594
"Botswana"                 2002  35   23.81374954991846   -22.1880523360801   7146969   325.796  3.372952  13.65778     .01681536    .5477104
"Botswana"                 2003  35   23.81374954991846   -22.1880523360801   8036845  52.25553  4.671824  3.867763     .04168242    1.619681
"Botswana"                 2004  35   23.81374954991846   -22.1880523360801  10415944 17.842302  6.746966  6.014678     .16759945    3.315373
"Botswana"                 2005  35   23.81374954991846   -22.1880523360801  50477012  65.32992  7.166213  8.494273     .06260648   3.8229654
"Botswana"                 2006  35   23.81374954991846   -22.1880523360801    753688  555.8862 10.310335  6.099618     .00518518    7.987185
"Botswana"                 2007  35   23.81374954991846   -22.1880523360801  14645468  395.7336 13.006267 10.764872    .013030366    9.272271
"Botswana"                 2008  35   23.81374954991846   -22.1880523360801   1879117 135.00468 13.364775  15.66777     .05890121    6.041979
"Botswana"                 2009  35   23.81374954991846   -22.1880523360801   3776681  70.43772   8.86377  16.72886     .13183981   11.453908
"Botswana"                 2010  35   23.81374954991846   -22.1880523360801   4039201  92.90221 10.455236  18.81948     .08322993    4.936467
"Botswana"                 2011  35   23.81374954991846   -22.1880523360801  22069776  2.632249 11.373919  4.909244     2.1860754    3.568519
"Botswana"                 2012  35   23.81374954991846   -22.1880523360801  53689236  2.632249  9.997845 4.7371607      3.324176   3.6288655
"Botswana"                 2013  35   23.81374954991846   -22.1880523360801  41435760  7.768843  8.912998  10.27558     1.0163765    3.684058
"Botswana"                 2014  35   23.81374954991846   -22.1880523360801  29333104  4.796864  8.122456 10.634151     1.9083743    3.579605
"Botswana"                 2015  35   23.81374954991846   -22.1880523360801  32678874  578.0952  7.398216  6.703864    .007079433    2.711595
"Botswana"                 2016  35   23.81374954991846   -22.1880523360801   1731639  83.72369  7.398216  4.950684    .026264926   12.455848
"Burkina Faso"             1996  42 -1.7463989056755453  12.274383858458796  14685399  50.08324  8.915753  9.212647   .0004504818   12.786032
"Burkina Faso"             1997  42 -1.7463989056755453  12.274383858458796   3043567  3.872308  8.573694  2.492128    .003667297   12.709138
"Burkina Faso"             1998  42 -1.7463989056755453  12.274383858458796   4902151  94.02332  8.126556 10.192673   .0007426227     11.6252
"Burkina Faso"             1999  42 -1.7463989056755453  12.274383858458796   7941412  8.399014  5.260384  9.790195    .005672063     5.21044
"Burkina Faso"             2000  42 -1.7463989056755453  12.274383858458796   6281639  173.3838  6.663795   6.56138   .0001361116    5.980082
"Burkina Faso"             2001  42 -1.7463989056755453  12.274383858458796  16464025 3.0436146  6.015562  3.805452    .004775717    5.373523
"Burkina Faso"             2002  42 -1.7463989056755453  12.274383858458796  12783613  250.2708  6.862589  11.42101   .0002121973    6.414193
"Burkina Faso"             2003  42 -1.7463989056755453  12.274383858458796   3347173  60.03719  9.183302 8.0028305   .0010766997    7.335972
"Burkina Faso"             2004  42 -1.7463989056755453  12.274383858458796   5521763 33.360542  7.174012  6.689685    .001888869    6.187195
"Burkina Faso"             2005  42 -1.7463989056755453  12.274383858458796  23310716  9.145805  7.210747  2.941031   .0041597234    7.153515
"Burkina Faso"             2006  42 -1.7463989056755453  12.274383858458796   5635859 26.465094  7.555095 12.100534   .0041597234    7.311117
"Burkina Faso"             2007  42 -1.7463989056755453  12.274383858458796   5197031  62.82407  8.654179  10.13778   .0014487214    9.183211
"Burkina Faso"             2008  42 -1.7463989056755453  12.274383858458796   3802803  56.80743 10.059135  9.533585   .0017760934   10.404152
"Burkina Faso"             2009  42 -1.7463989056755453  12.274383858458796  17014056  8.558409   9.25667  6.479319    .009888065   12.345053
"Burkina Faso"             2010  42 -1.7463989056755453  12.274383858458796  28481946  44.05433  10.55823  8.955203     .00241598    14.92755
"Burkina Faso"             2011  42 -1.7463989056755453  12.274383858458796  15653336  98.67007 13.677193 4.5542073   .0004508217   18.725376
"Burkina Faso"             2012  42 -1.7463989056755453  12.274383858458796   9460830  7.918809 15.875013   5.13754    .014376565   18.997168
"Burkina Faso"             2013  42 -1.7463989056755453  12.274383858458796   9918196 28.219553 14.005953  11.41643    .010262776   17.293825
"Burkina Faso"             2014  42 -1.7463989056755453  12.274383858458796  17231540 17.488194 12.716898  9.393352     .01899917   16.864077
"Burkina Faso"             2015  42 -1.7463989056755453  12.274383858458796   7300116  11.68881  13.53846  10.79001    .013682513    20.98524
"Burkina Faso"             2016  42 -1.7463989056755453  12.274383858458796  20246380  16.89307  13.53846  3.707062    .003346267   .22385524
"Burundi"                  1996  43  29.890484050138404 -3.3664890597484587  25203844  8.571363  20.42165 1.7023183  .00019254687    28.37523
"Burundi"                  1997  43  29.890484050138404 -3.3664890597484587  10549678 19.410156 17.677279 2.8376684  .00012391988   23.621565
"Burundi"                  1998  43  29.890484050138404 -3.3664890597484587  11985440 11.256915  16.92812 2.2653968  .00013408903   27.011356
"Burundi"                  1999  43  29.890484050138404 -3.3664890597484587  20344548 18.869043 13.788254  2.419681   .0001890501   15.412393
"Burundi"                  2000  43  29.890484050138404 -3.3664890597484587   6443751  47.04573  6.080245    2.8684   .0003482377   15.053692
"Burundi"                  2001  43  29.890484050138404 -3.3664890597484587  30683868  85.16896  9.730244 4.5877957  .00014013541   18.653854
"Burundi"                  2002  43  29.890484050138404 -3.3664890597484587  10346697  85.16896  10.55954  3.318508    .002606129    24.11573
"Burundi"                  2003  43  29.890484050138404 -3.3664890597484587  11668818  37.39759 16.072147 4.2280774   .0003042936    40.55007
"Burundi"                  2004  43  29.890484050138404 -3.3664890597484587  23670808  37.39759  13.36723  3.590096   .0009704344    30.59273
"Burundi"                  2005  43  29.890484050138404 -3.3664890597484587   6419901  37.39759 12.203648  3.106492    .001510929    26.47682
"Burundi"                  2006  43  29.890484050138404 -3.3664890597484587  41853944 15.168947 12.589868  2.953567   .0002904715    24.11697
"Burundi"                  2007  43  29.890484050138404 -3.3664890597484587  43827180 15.168947 14.562042 3.1991005   .0020577402   32.556114
"Burundi"                  2008  43  29.890484050138404 -3.3664890597484587  40252976 15.168947  16.03938  2.511247    .003014635   33.390926
"Burundi"                  2009  43  29.890484050138404 -3.3664890597484587  43073832  47.88997 16.064018 4.1759205  .00023527916    31.35737
"Burundi"                  2010  43  29.890484050138404 -3.3664890597484587  19120680 19.694157 16.499815 2.4659526   .0004303128    24.13432
"Burundi"                  2011  43  29.890484050138404 -3.3664890597484587  49871664 16.644947 18.202635  5.526068     .00608474   23.837616
"Burundi"                  2012  43  29.890484050138404 -3.3664890597484587  38450320  4.094543 17.968384  2.930594    .006373889    16.75686
"Burundi"                  2013  43  29.890484050138404 -3.3664890597484587   3105419 15.492642 18.025589  4.826927   .0019991721    16.06113
"Burundi"                  2014  43  29.890484050138404 -3.3664890597484587  28792640  10.01763 16.675688  5.222345   .0032952614   14.138004
"Burundi"                  2015  43  29.890484050138404 -3.3664890597484587  29649136  10.01763 15.867878 4.0636916    .006110306   17.160543
"Burundi"                  2016  43  29.890484050138404 -3.3664890597484587  27717292   19.8039 15.867878  4.014459   .0014460522   1.6105767
"Cabo Verde"               1996  47 -23.980244187563258   15.94123272842388   1079580  73.68158   4.97791 2.0602558  .00044109585    .6995824
"Cabo Verde"               1997  47 -23.980244187563258   15.94123272842388   8690164  73.68158  5.238934 1.9416233  .00016903764    .6958637
"Cabo Verde"               1998  47 -23.980244187563258   15.94123272842388    678113 107.11163  6.891724 1.9865538  .00013159527    .7066209
"Cabo Verde"               1999  47 -23.980244187563258   15.94123272842388   3682876  175.2689  4.812697 3.1595404  .00004297999    .3678554
"Cabo Verde"               2000  47 -23.980244187563258   15.94123272842388   3393409  175.2689  5.948762   2.48944  .00004297999    .4142639
"Cabo Verde"               2001  47 -23.980244187563258   15.94123272842388   4014103 109.38757  6.088899  2.537064  .00005060887   .39662606
"Cabo Verde"               2002  47 -23.980244187563258   15.94123272842388  12004701 119.30764  6.153033 2.8656545   .0001014779    .4471822
"Cabo Verde"               2003  47 -23.980244187563258   15.94123272842388   7526307 256.83124  7.545666  4.680163  .00009842752    .6158354
"Cabo Verde"               2004  47 -23.980244187563258   15.94123272842388   1633652  395.6086  6.924398  4.269916 .000027964863   .51325387
"Cabo Verde"               2005  47 -23.980244187563258   15.94123272842388    405259  395.6086 10.883353 2.3355591  .00038174225    .4966612
"Cabo Verde"               2006  47 -23.980244187563258   15.94123272842388   4797187 222.56404  14.21772  5.175218  .00010352361    .4258945
"Cabo Verde"               2007  47 -23.980244187563258   15.94123272842388   1981899 134.38028 20.077036  2.590663  .00007194954    .4890847
"Cabo Verde"               2008  47 -23.980244187563258   15.94123272842388   3789383   40.7911  21.18702  2.724154   .0006496905    .4789932
"Cabo Verde"               2009  47 -23.980244187563258   15.94123272842388   1930433 241.53455 13.561744  4.885962   .0004039528    .5440446
"Cabo Verde"               2010  47 -23.980244187563258   15.94123272842388   3111906 241.53455  19.19068  3.633831   .0012382133    .4882983
"Cabo Verde"               2011  47 -23.980244187563258   15.94123272842388   1016100 241.53455  19.53127  5.325577   .0012382133    .5040318
"Cabo Verde"               2012  47 -23.980244187563258   15.94123272842388  13033809 241.53455 17.110106  6.927062   .0012382133    .6315693
"Cabo Verde"               2013  47 -23.980244187563258   15.94123272842388   3598648  486.7593 17.537294   5.38643  .00009642816    .6164749
"Cabo Verde"               2014  47 -23.980244187563258   15.94123272842388   7303517  47.83794 14.455986  4.946973  .00058180647    .6374309
"Cabo Verde"               2015  47 -23.980244187563258   15.94123272842388   2255516  118.7822  11.99401  4.581484  .00027740665    .9731719
"Cabo Verde"               2016  47 -23.980244187563258   15.94123272842388   3386806  378.1909  11.99401  5.647484  .00007613715   2.5621974
"Cameroon"                 1996  45   12.74475426235271   5.691944491582316    533361  184.4042 33.680553  1.444963  .00013439376   11.133176
"Cameroon"                 1997  45   12.74475426235271   5.691944491582316    277646  316.1618 36.631943 1.6045707  .00008144102   10.110292
"Cameroon"                 1998  45   12.74475426235271   5.691944491582316 100161712  366.6939 25.994413  1.739605  .00007219431    6.585636
"Cameroon"                 1999  45   12.74475426235271   5.691944491582316   1219541 597.35986  32.87741 2.8341885  .00009316107    6.439063
"Cameroon"                 2000  45   12.74475426235271   5.691944491582316 185960288 597.35986  42.68597 4.1181173    .006778507    12.53282
"Cameroon"                 2001  45   12.74475426235271   5.691944491582316 154324928 14.409028 35.830597 1.8690256    .002877679    7.299567
"Cameroon"                 2002  45   12.74475426235271   5.691944491582316   1076413  51.01697 31.974276 3.6749325   .0012442356    6.463125
"Cameroon"                 2003  45   12.74475426235271   5.691944491582316   1684635 249.64784 31.883957   3.13538   .0003055952    6.664687
"Cameroon"                 2004  45   12.74475426235271   5.691944491582316  55982144 144.59073 36.479115  3.767187   .0007140038    7.376881
"Cameroon"                 2005  45   12.74475426235271   5.691944491582316  48032936  186.1142  39.42979  1.305245   .0005338776    9.123825
"Cameroon"                 2006  45   12.74475426235271   5.691944491582316   3643604  6.627545  38.42289 1.8914214    .013973154   10.495419
"Cameroon"                 2007  45   12.74475426235271   5.691944491582316   6781053   20.9656  35.34347  5.158409    .000698988   11.072228
"Cameroon"                 2008  45   12.74475426235271   5.691944491582316    784496  88.99214 36.775566  5.269396  .00018428317   12.632468
"Cameroon"                 2009  45   12.74475426235271   5.691944491582316    505799  204.6187 22.418926 1.0762267  .00002423802    6.996937
"Cameroon"                 2010  45   12.74475426235271   5.691944491582316  54717040  6.532066  26.91963 2.0863066    .019013675     8.39342
"Cameroon"                 2011  45   12.74475426235271   5.691944491582316   4957558 114.69098 32.785286 1.6714076  .00006320685    9.957578
"Cameroon"                 2012  45   12.74475426235271   5.691944491582316  58665808  89.95172 32.423656 1.7631272    .001932705   10.509792
"Cameroon"                 2013  45   12.74475426235271   5.691944491582316   2335333 30.900267 27.463024 4.0983453    .005341635   9.4053335
"Cameroon"                 2014  45   12.74475426235271   5.691944491582316   3372189 18.833683  23.32754  5.070136    .017675556    8.440559
"Cameroon"                 2015  45   12.74475426235271   5.691944491582316    266000  27.60953 14.264127 2.3660214   .0020408875    6.167601
"Cameroon"                 2016  45   12.74475426235271   5.691944491582316   3876119  6.701687 14.264127  2.859117    .004225527    23.95937



end
format %ty year
------------------ copy up to and including the previous line ------------------








Viewing all 72832 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>