Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 73261

Replicate xttobit margins after gsem

$
0
0
Dear stateliest-ers,

I am trying to replicate margins estimation after xttobit, based on the gsem routine. Here is what I have done.

Code:
. webuse nlswork3
(National Longitudinal Survey.  Young Women 14-26 years of age in 1968)

. xtset idcode year
       panel variable:  idcode (unbalanced)
        time variable:  year, 68 to 88, but with gaps
                delta:  1 unit

. xttobit ln_wage union age grade not_smsa, ul(1.9)

Obtaining starting values for full model:

Iteration 0:   log likelihood = -5570.3905
Iteration 1:   log likelihood = -5434.9487
Iteration 2:   log likelihood = -5433.7625
Iteration 3:   log likelihood = -5433.7619

Fitting full model:

Iteration 0:   log likelihood = -6935.1692  
Iteration 1:   log likelihood = -6877.0531  
Iteration 2:   log likelihood = -6875.2535  
Iteration 3:   log likelihood =  -6875.252  
Iteration 4:   log likelihood =  -6875.252  

Random-effects tobit regression                 Number of obs     =     19,224
Group variable: idcode                          Number of groups  =      4,148

Random effects u_i ~ Gaussian                   Obs per group:
                                                              min =          1
                                                              avg =        4.6
                                                              max =         12

Integration method: mvaghermite                 Integration pts.  =         12

                                                Wald chi2(4)      =    2770.47
Log likelihood  =  -6875.252                    Prob > chi2       =     0.0000

------------------------------------------------------------------------------
     ln_wage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       union |   .1482463   .0069843    21.23   0.000     .1345573    .1619353
         age |   .0104275   .0004148    25.14   0.000     .0096146    .0112404
       grade |   .0807764   .0022986    35.14   0.000     .0762713    .0852815
    not_smsa |  -.1454109   .0092189   -15.77   0.000    -.1634796   -.1273421
       _cons |   .3629613   .0319946    11.34   0.000     .3002531    .4256696
-------------+----------------------------------------------------------------
    /sigma_u |   .3094639   .0048855    63.34   0.000     .2998886    .3190393
    /sigma_e |   .2492985   .0018282   136.36   0.000     .2457152    .2528817
-------------+----------------------------------------------------------------
         rho |   .6064422   .0083153                      .5900559    .6226421
------------------------------------------------------------------------------
             0  left-censored observations
        12,334     uncensored observations
         6,890 right-censored observations
The margins are estimated as follows:

Code:
. margins, dydx(*) atmeans predict(ystar(.,1.9))

Conditional marginal effects                    Number of obs     =     19,224
Model VCE    : OIM

Expression   : E(ln_wage*|ln_wage<1.9), predict(ystar(.,1.9))
dy/dx w.r.t. : union age grade not_smsa
at           : union           =    .2342905 (mean)
               age             =    31.36366 (mean)
               grade           =     12.7642 (mean)
               not_smsa        =    .2829796 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       union |   .1007414   .0047869    21.05   0.000     .0913592    .1101236
         age |   .0070861   .0002829    25.05   0.000     .0065317    .0076404
       grade |   .0548919   .0015846    34.64   0.000     .0517862    .0579977
    not_smsa |  -.0988145   .0063094   -15.66   0.000    -.1111807   -.0864483
------------------------------------------------------------------------------
I finally replicate the xttobit results with gsem:

Code:
. gsem ln_wage <- union age grade not_smsa RE[idcode], family(gaussian, rcensored(1.9)
> )

Fitting fixed-effects model:

Iteration 0:   log likelihood = -11846.483  
Iteration 1:   log likelihood = -10432.472  
Iteration 2:   log likelihood = -10312.817  
Iteration 3:   log likelihood = -10312.543  
Iteration 4:   log likelihood = -10312.543  

Refining starting values:

Grid node 0:   log likelihood = -10058.171

Fitting full model:

Iteration 0:   log likelihood = -10058.171  (not concave)
Iteration 1:   log likelihood = -8744.4558  (not concave)
Iteration 2:   log likelihood = -7819.9317  (not concave)
Iteration 3:   log likelihood = -7098.5025  
Iteration 4:   log likelihood =  -6918.365  
Iteration 5:   log likelihood = -6875.2693  
Iteration 6:   log likelihood =  -6875.102  
Iteration 7:   log likelihood =  -6875.102  

Generalized structural equation model           Number of obs     =     19,224
Response       : ln_wage                        Uncensored        =     12,334
Upper limit    : 1.9                            Left-censored     =          0
Family         : Gaussian                       Right-censored    =      6,890
Link           : identity
Log likelihood =  -6875.102

 ( 1)  [ln_wage]RE[idcode] = 1
--------------------------------------------------------------------------------
               |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
---------------+----------------------------------------------------------------
ln_wage <-     |
         union |   .1482403    .006981    21.23   0.000     .1345578    .1619229
           age |   .0104287   .0004147    25.15   0.000     .0096159    .0112415
         grade |   .0808181   .0022927    35.25   0.000     .0763245    .0853117
      not_smsa |  -.1454202   .0092168   -15.78   0.000    -.1634848   -.1273557
               |
    RE[idcode] |          1  (constrained)
               |
         _cons |   .3624916   .0319395    11.35   0.000     .2998912    .4250919
---------------+----------------------------------------------------------------
var(RE[idcode])|   .0958442   .0030309                      .0900841    .1019727
---------------+----------------------------------------------------------------
 var(e.ln_wage)|   .0621425   .0009115                      .0603815    .0639549
--------------------------------------------------------------------------------
Now, how can I get the same marginal effects I got after the xttobit?

Many thanks!
Rohit

Viewing all articles
Browse latest Browse all 73261

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>