Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 73268

Dealing with missing data

$
0
0
Hello everyone,
I really need help.
I am trying to see the impact of a reduction of tariffs on the wage skill premium for a country after trade liberalization. My databse is a panel databse at firm level. The wage skill premium is the wages of skilled workers over the wages of unskilled workers.
I want to use the directors wages as proxy for skilled workers' wages. The problem is that I have 70% of missing values for directors remuneration. Is there an econometric solution/ method I can use ? I saw on internet that there are methods like multiple imputation or maximum likelihood. I am not an expert in econometrics and I don't know if it is possible and which method could be the best one.
Thank you bery much for your help. I really need it because I am bistranded.

sum of directors remunerations variable:
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
directorsr~n | 64909 .0980383 .7602785 0 67.53

sum of salaries and wages variable:

Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
salarieswa~s | 64909 6.254965 48.94163 0 3867.4


example of a little part of my dataset:
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input float year byte industry float(compensationtoemployees salarieswages directorsremuneration)
1989 .    .77    0   0
1989 .   9.79    0   0
1989 .   1.66    0   0
1989 .    .39    0   0
1989 .  17.72    0   0
1989 .   2.31    0   0
1989 .  11.94    0   0
1989 .   4.68    0   0
1989 .    .18    0   0
1989 .    .48    0   0
1989 .   3.73    0   0
1989 .   1.04    0   0
1989 .   2.01    0   0
1989 .    .71    0   0
1989 .  11.96 9.83   0
1989 .  11.32    0   0
1989 .    .06    0   0
1989 .   2.34    0   0
1989 .    1.4    0   0
1989 .   3.39 2.81   0
1989 .    .08    0   0
1989 .   1.44    0   0
1989 .    .89    0   0
1989 .    .68    0   0
1989 .   1.24    0   0
1989 . 825.95    0   0
1989 .    .32    0   0
1989 .   1.16    0   0
1989 .     .4    0   0
1989 .  54.73    0   0
1989 .    .71    0   0
1989 .   3.17    0   0
1989 .   5.02    0   0
1989 .  34.11    0   0
1989 .   2.73    0   0
1989 .   2.53    0   0
1989 .   1.53    0   0
1989 .   8.56    0   0
1989 .   1.13    0   0
1989 .    1.2    0   0
1989 .    .06    0   0
1989 .    .47    0   0
1989 .  16.72    0   0
1989 .   6.52    0   0
1989 .    .94    0   0
1989 .   12.7    0   0
1989 .   2.94    0   0
1989 .    .21    0   0
1989 .    2.1    0   0
1989 .    .64    0   0
1989 .    .76    0   0
1989 .    .04    0   0
1989 .    2.3    0   0
1989 .   1.48    0   0
1989 .  45.48    0   0
1989 .    .36    0   0
1989 .   2.45    0   0
1989 .  10.72    0   0
1989 .   3.15    0   0
1989 .  15.31    0   0
1989 .   2.05    0   0
1989 .   1.14    0   0
1989 .    .92    0   0
1989 .    2.5 1.99 .03
1989 .   6.62    0   0
1989 .   5.25    0   0
1989 .    .93    0   0
1989 . 202.37    0   0
1989 .   1.86    0   0
1989 .   7.07    0   0
1989 .    .34    0   0
1989 .   1.08    0   0
1989 .   5.35    0   0
1989 .   2.05    0   0
1989 .  12.68    0   0
1989 .   1.19    0   0
1989 .  31.62    0   0
1989 .    .16    0   0
1989 .  13.62    0   0
1989 .    7.5    0   0
1989 .    .79    0   0
1989 .   2.04    0   0
1989 .  11.83    0   0
1989 .   5.38    0   0
1989 .   2.01    0   0
1989 .   1.36    0   0
1989 .    .18    0   0
1989 .   1.08    0   0
1989 .    .77    0   0
1989 .    1.6    0   0
1989 .    .77    0   0
1989 .    .22    0   0
1989 .   4.45    0   0
1989 .   6.47    0   0
1989 .  25.08    0   0
1989 .   8.05    0   0
1989 .   4.12    0   0
1989 .  14.42    0   0
1989 .   5.18    0   0
1989 .    .32    0   0
end

Viewing all articles
Browse latest Browse all 73268

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>