Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 73259

vce(robust) in mixed model (MLM)

$
0
0
Hello everyone,

I hope you are well.

I'm wondering about the mixed models.

Here is my order:

Code:
mixed Qtobin_w mills centBWOMEN  c.centBWOMEN#i.quota BoardSize  indep CEOChairmanDuality SIZE_w lnAGE leverage_w  ESGScore uncemployement popgrwoth corruption GDPgrowth Dummylegalsystem quota i.Year i.NAICS2digit || CountryofHeadquarters: || entFE:, mle
Here are the results :

Code:
mixed Qtobin_w  centBWOMEN  c.centBWOMEN#i.quota BoardSize  indep CEOChairmanDuality SIZE_w lnAGE leverage_w  ESGScore uncemployement popgrwoth corrup
> tion GDPgrowth Dummylegalsystem quota i.Year i.NAICS2digit || CountryofHeadquarters: || entFE:, mle

Performing EM optimization ...

Performing gradient-based optimization: 
Iteration 0:   log likelihood = -52779.705  
Iteration 1:   log likelihood = -52779.705  

Computing standard errors ...

Mixed-effects ML regression                     Number of obs     =     48,134

        Grouping information
        -------------------------------------------------------------
                        |     No. of       Observations per group
         Group variable |     groups    Minimum    Average    Maximum
        ----------------+--------------------------------------------
           CountryofH~s |         40         10    1,203.3     17,582
                  entFE |      7,080          2        6.8         19
        -------------------------------------------------------------

                                                Wald chi2(53)     =    4631.52
Log likelihood = -52779.705                     Prob > chi2       =     0.0000

------------------------------------------------------------------------------------
          Qtobin_w | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------------+----------------------------------------------------------------
        centBWOMEN |   .1165522    .042965     2.71   0.007     .0323423    .2007621
                   |
quota#c.centBWOMEN |
                1  |   .2555075    .111079     2.30   0.021     .0377966    .4732183
                   |
         BoardSize |   .0097224   .0016394     5.93   0.000     .0065092    .0129356
             indep |   .0178116    .027422     0.65   0.516    -.0359345    .0715577
CEOChairmanDuality |   .0260314   .0101111     2.57   0.010      .006214    .0458488
            SIZE_w |   -.277437   .0065622   -42.28   0.000    -.2902987   -.2645752
             lnAGE |  -.0843648    .008927    -9.45   0.000    -.1018613   -.0668682
        leverage_w |  -.0647433   .0052194   -12.40   0.000    -.0749731   -.0545135
          ESGScore |   .0028652   .0003365     8.52   0.000     .0022057    .0035246
    uncemployement |  -2.323016   .2430006    -9.56   0.000    -2.799288   -1.846744
         popgrwoth |   4.925222   .9433319     5.22   0.000     3.076325    6.774118
        corruption |  -.1158873    .025226    -4.59   0.000    -.1653292   -.0664453
         GDPgrowth |   .0258892   .0020749    12.48   0.000     .0218224    .0299559
  Dummylegalsystem |   -.091007    .218237    -0.42   0.677    -.5187437    .3367297
             quota |  -.0210635   .0241421    -0.87   0.383    -.0683812    .0262542
I specify first || CountryofHeadquarters: then || entFE: // so I specify first the country level then the company level, is that correct?

Indeed, if I do the opposite, the No of groups remain similar on both levels (country and company).

Code:
. mixed Qtobin_w  centBWOMEN  c.centBWOMEN#i.quota BoardSize  indep CEOChairmanDuality SIZE_w lnAGE leverage_w  ESGScore uncemployement popgrwoth corrup
> tion GDPgrowth Dummylegalsystem quota i.Year i.NAICS2digit  || entFE: || CountryofHeadquarters:, mle

Performing EM optimization ...

Performing gradient-based optimization: 
Iteration 0:   log likelihood = -53063.497  (not concave)
Iteration 1:   log likelihood = -53063.497  (backed up)

Computing standard errors ...

Mixed-effects ML regression                     Number of obs     =     48,134

        Grouping information
        -------------------------------------------------------------
                        |     No. of       Observations per group
         Group variable |     groups    Minimum    Average    Maximum
        ----------------+--------------------------------------------
                  entFE |      7,080          2        6.8         19
           CountryofH~s |      7,080          2        6.8         19
        -------------------------------------------------------------

                                                Wald chi2(53)     =    4487.85
Log likelihood = -53063.497                     Prob > chi2       =     0.0000

------------------------------------------------------------------------------------
          Qtobin_w | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------------+----------------------------------------------------------------
        centBWOMEN |   .0492723   .0427491     1.15   0.249    -.0345144    .1330589
                   |
quota#c.centBWOMEN |
                1  |   .0275504   .1095757     0.25   0.801    -.1872141    .2423148

Secondly, with regard to vce(robust) robust standard errors, is it really worth adding them, given that robust standard errors don't take intra-group or intra-cluster correlation structure into account?

Is it better to use the vce(cluster) option? If so, which cluster should I specify? entFE? CountryofHeadquarters?

Finally, if I include the vce(robust) option in my analysis, my prob>chi2 stat doesn't appear (the stat does appear if I set only i.Year or only i.NAICS2digit, but if I include both in the model, it doesn't appear).

Thank you very much in advance,

Loïc Dubois

Viewing all articles
Browse latest Browse all 73259

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>