Hi! I have ran a regression analysis, see below. It shows that people who do Economics, Mathematics and Computer Sciences earn significantly higher than others. It also shows that Asian Indian and Pakistani earn significantly more than others. I want to test whether Indian and Pakistani students are self-selecting into the higher paying subjects with "teffects ipwra" and conducted a test.
Code:
reg ln_real_income year_2018_19 year_2019_20 Female Mature first_class lower_second_class third_class un > classified London arts_humanities social_sciences medicine Economics Law Mathematics Computer_sciences P > arents_no_degree imd_40pc disability polar1_2 asian_high_paying black_high_paying mixed_high_paying Arab > Asian_Bangladeshi Asian_Indian Asian_Pakistani black_African black_Caribbean Chinese no_info mixed_whit > e_asian mixed_white_african mixed_white_caribeean Source | SS df MS Number of obs = 2,062 -------------+---------------------------------- F(34, 2027) = 31.26 Model | 91.0613268 34 2.67827432 Prob > F = 0.0000 Residual | 173.677701 2,027 .085682141 R-squared = 0.3440 -------------+---------------------------------- Adj R-squared = 0.3330 Total | 264.739027 2,061 .128451736 Root MSE = .29272 --------------------------------------------------------------------------------------- ln_real_income | Coefficient Std. err. t P>|t| [95% conf. interval] ----------------------+---------------------------------------------------------------- year_2018_19 | -.0092687 .015784 -0.59 0.557 -.0402233 .021686 year_2019_20 | -.0586619 .0161195 -3.64 0.000 -.0902744 -.0270494 Female | -.0826012 .0139492 -5.92 0.000 -.1099575 -.0552449 Mature | .0382448 .0370626 1.03 0.302 -.0344398 .1109295 first_class | .0645985 .0166097 3.89 0.000 .0320247 .0971723 lower_second_class | -.0891009 .0381644 -2.33 0.020 -.1639464 -.0142554 third_class | -.058365 .0899435 -0.65 0.516 -.2347564 .1180263 unclassified | .1204162 .0230371 5.23 0.000 .0752373 .165595 London | .1986692 .0141862 14.00 0.000 .1708481 .2264902 arts_humanities | -.2094648 .020395 -10.27 0.000 -.2494621 -.1694675 social_sciences | -.1152332 .0226748 -5.08 0.000 -.1597014 -.0707649 medicine | .0317705 .0263738 1.20 0.228 -.0199521 .0834931 Economics | .247034 .0343026 7.20 0.000 .1797621 .314306 Law | -.0295825 .0362345 -0.82 0.414 -.1006432 .0414783 Mathematics | .2362116 .0347456 6.80 0.000 .1680708 .3043525 Computer_sciences | .3802876 .0369847 10.28 0.000 .3077555 .4528196 Parents_no_degree | .0247399 .0197299 1.25 0.210 -.0139531 .063433 imd_40pc | -.0324318 .02108 -1.54 0.124 -.0737724 .0089089 disability | -.040524 .0205868 -1.97 0.049 -.0808975 -.0001505 polar1_2 | -.0528427 .0230941 -2.29 0.022 -.0981334 -.0075521 asian_high_paying | -.0357674 .0383723 -0.93 0.351 -.1110206 .0394858 black_high_paying | .0939296 .0981908 0.96 0.339 -.0986358 .286495 mixed_high_paying | -.0064315 .0584076 -0.11 0.912 -.1209768 .1081137 Arab | -.0762608 .0990565 -0.77 0.441 -.270524 .1180023 Asian_Bangladeshi | -.0335714 .0946529 -0.35 0.723 -.2191985 .1520557 Asian_Indian | .1352684 .0332033 4.07 0.000 .0701522 .2003846 Asian_Pakistani | .2403407 .0715806 3.36 0.001 .0999616 .3807199 black_African | -.0290208 .0718641 -0.40 0.686 -.1699561 .1119145 black_Caribbean | .0679038 .1301019 0.52 0.602 -.1872437 .3230513 Chinese | .0672874 .0416096 1.62 0.106 -.0143146 .1488894 no_info | .0953633 .0606149 1.57 0.116 -.0235108 .2142374 mixed_white_asian | .0328668 .0405814 0.81 0.418 -.0467188 .1124524 mixed_white_african | -.0501021 .0914115 -0.55 0.584 -.2293724 .1291682 mixed_white_caribeean | .0842579 .0897269 0.94 0.348 -.0917086 .2602245 _cons | 10.28573 .0208051 494.38 0.000 10.24493 10.32654 ---------------------------------------------------------------------------------------
Code:
teffects ipwra ( high_paying_subject Female imd_40pc polar1_2 disability) ( Asian imd_40pc p > olar1_2 disability) Iteration 0: EE criterion = 5.742e-24 Iteration 1: EE criterion = 1.099e-33 Treatment-effects estimation Number of obs = 2,062 Estimator : IPW regression adjustment Outcome model : linear Treatment model: logit ------------------------------------------------------------------------------ | Robust high_payin~t | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- ATE | Asian | (1 vs 0) | .1998188 .0362915 5.51 0.000 .1286888 .2709489 -------------+---------------------------------------------------------------- POmean | Asian | 0 | .3066177 .0108662 28.22 0.000 .2853202 .3279151 ------------------------------------------------------------------------------