Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 73084

Comparisons of means at timepoints (beginner question)

$
0
0
Hi all,

I have fit the model below, and just wanted to make sure of the correct way to do a certain set of pairwise comparisons. I want to see whether the average on the outcome variable (adhdsev) was significantly higher than at the starting point (TimeWeight=0), for each of the four remaining timepoints (TimeWeight 1-4). I'd like to do this separately by i.adhdsubtype (3 possible subtypes, for a total of 12 pairwise comparisons). I would also like to do the same for overall means (not broken down by subtype, 4 pairwise comparisons). I was able to run margins with confidence intervals but I thought something like pwcompare might be necessary in order to do multiple comparisons. However I'm uncertain as to how to specify the levels for pwcompare for a continuous variable.

I also wanted to find out if there's any caveats in interpreting comparisons (or margins) given the presence of the additional interaction in the model of i.adhdsubtype#c.TimeWeight#c.TimeWeight. E.g. are the marginal means set for a certain value in the deceleration of the slope that might make interpretation difficult?

Code:
. mixed adhdsev c.TimeWeight c.TimeWeight#i.adhdsubtype c.TimeWeight#c.TimeWeight i.adhdsubtype#c.TimeWeight#c.TimeWeight, ///
>            || id: TimeWeight, variance mle covariance(unstructured) ///
>            residuals(independent,t(TimeWeight)), 
Note: t() not required for this residual structure; ignored

Performing EM optimization: 

Performing gradient-based optimization: 

Iteration 0:   log likelihood = -434.58713  
Iteration 1:   log likelihood = -432.68323  
Iteration 2:   log likelihood = -432.66667  
Iteration 3:   log likelihood = -432.66667  

Computing standard errors:

Mixed-effects ML regression                     Number of obs     =        244
Group variable: id                              Number of groups  =         93

                                                Obs per group:
                                                              min =          1
                                                              avg =        2.6
                                                              max =          4

                                                Wald chi2(6)      =      62.99
Log likelihood = -432.66667                     Prob > chi2       =     0.0000

-----------------------------------------------------------------------------------------------------------------
                                        adhdsev |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------------------------------------+----------------------------------------------------------------
                                     TimeWeight |  -.1340633    .360817    -0.37   0.710    -.8412517     .573125
                                                |
                       adhdsubtype#c.TimeWeight |
         ADHD, Predominantly Innattentive Type  |  -1.540448   .4016991    -3.83   0.000    -2.327764   -.7531322
ADHD, Predominantly Hyperactive-Impulsive Type  |  -2.915497   .9290948    -3.14   0.002    -4.736489   -1.094505
                                                |
                      c.TimeWeight#c.TimeWeight |  -.0286886   .1192213    -0.24   0.810    -.2623581    .2049809
                                                |
          adhdsubtype#c.TimeWeight#c.TimeWeight |
         ADHD, Predominantly Innattentive Type  |   .4004778   .1331424     3.01   0.003     .1395235    .6614322
ADHD, Predominantly Hyperactive-Impulsive Type  |   .7815377   .3276643     2.39   0.017     .1393275    1.423748
                                                |
                                          _cons |   4.752859   .1239529    38.34   0.000     4.509916    4.995802
-----------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
               var(TimeWe~t) |   .2278224   .0975934      .0983927     .527509
                  var(_cons) |   .0480474   .0567667      .0047424    .4867911
         cov(TimeWe~t,_cons) |   .1046244   .0546602     -.0025076    .2117563
-----------------------------+------------------------------------------------
               var(Residual) |   1.463658   .1712223      1.163761    1.840836
------------------------------------------------------------------------------
LR test vs. linear model: chi2(3) = 21.75                 Prob > chi2 = 0.0001

Note: LR test is conservative and provided only for reference.

. 
.                    estimates store quadpredict ,

.                   lrtest final quadpredict

Likelihood-ratio test                                 LR chi2(2)  =     10.69
(Assumption: final nested in quadpredict)             Prob > chi2 =    0.0048

. margins i.adhdsubtype, at(TimeWeight=(0(1)4)) vsquish

Adjusted predictions                            Number of obs     =        244

Expression   : Linear prediction, fixed portion, predict()
1._at        : TimeWeight      =           0
2._at        : TimeWeight      =           1
3._at        : TimeWeight      =           2
4._at        : TimeWeight      =           3
5._at        : TimeWeight      =           4

-------------------------------------------------------------------------------------------------------------------
                                                  |            Delta-method
                                                  |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------------------------------------------+----------------------------------------------------------------
                                  _at#adhdsubtype |
                           1#ADHD, Combined Type  |   4.752859   .1239529    38.34   0.000     4.509916    4.995802
         1#ADHD, Predominantly Innattentive Type  |   4.752859   .1239529    38.34   0.000     4.509916    4.995802
1#ADHD, Predominantly Hyperactive-Impulsive Type  |   4.752859   .1239529    38.34   0.000     4.509916    4.995802
                           2#ADHD, Combined Type  |   4.590107   .2435981    18.84   0.000     4.112664    5.067551
         2#ADHD, Predominantly Innattentive Type  |   3.450137   .1640803    21.03   0.000     3.128545    3.771728
2#ADHD, Predominantly Hyperactive-Impulsive Type  |   2.456148   .5955657     4.12   0.000      1.28886    3.623435
                           3#ADHD, Combined Type  |   4.369978   .3426055    12.76   0.000     3.698483    5.041473
         3#ADHD, Predominantly Innattentive Type  |   2.890993   .2343395    12.34   0.000     2.431696     3.35029
3#ADHD, Predominantly Hyperactive-Impulsive Type  |   1.665134   .7704188     2.16   0.031     .1551414    3.175128
                           4#ADHD, Combined Type  |   4.092471   .4908227     8.34   0.000     3.130477    5.054466
         4#ADHD, Predominantly Innattentive Type  |   3.075428   .3050299    10.08   0.000      2.47758    3.673275
4#ADHD, Predominantly Hyperactive-Impulsive Type  |   2.379819   1.083324     2.20   0.028     .2565441    4.503094
                           5#ADHD, Combined Type  |   3.757588   .9069076     4.14   0.000     1.980081    5.535094
         5#ADHD, Predominantly Innattentive Type  |   4.003441    .508255     7.88   0.000     3.007279    4.999602
5#ADHD, Predominantly Hyperactive-Impulsive Type  |   4.600202    2.19747     2.09   0.036     .2932402    8.907164
-------------------------------------------------------------------------------------------------------------------

. marginsplot, x(TimeWeight)

  Variables that uniquely identify margins: TimeWeight adhdsubtype




Viewing all articles
Browse latest Browse all 73084

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>