Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 72762

Questions regarding interpretation of linear mixed model

$
0
0
Hello,

I am using Stata/MP 14.1 for Mac. I've been trying to analyze my data from repeated measure design experiment (n=6) with linear mixed models (Command mixed) under the setting like below.

- Dependent variable : volume_after
- Explanatory variable : approach (left, right), pressure (0, 5, 10, 15)
- Group variable : Index

And for better small sample analysis, I used "reml" and "dfmethod (kroger)" option described in Stata material.
(
http://www.stata.com/meeting/columbus15/abstracts/materials/columbus15_yang.pdf)

I followed "top-down analysis" described in the textbook (Linear mixed models : A practical guide using statistical software, second edition).

Among three models described below, "lrtest" showed that Model 2. the better fitted model.
Model 1. mixed volume_after i.pressure approach_d i.pressure#c.approach_d || index: , covariance (identity) variance reml dfmethod(kroger)
Model 2. mixed volume_after i.pressure approach_d i.pressure#c.approach_d || index: pressure, covariance (unstruct) variance reml dfmethod(kroger)
Model 3. mixed volume_after i.pressure approach_d i.pressure#c.approach_d || index: pressure, covariance (unstruct) variance reml dfmethod(kroger) residuals(independent, by(approach_d))

* "
approach_d" is a dummy variable for "approach"

The result of Model 2
Code:
Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log restricted-likelihood = -69.838378  
Iteration 1:   log restricted-likelihood = -69.684868  
Iteration 2:   log restricted-likelihood = -69.680506  
Iteration 3:   log restricted-likelihood = -69.680503  

Computing standard errors:

Computing degrees of freedom:

Mixed-effects REML regression                   Number of obs     =         20
Group variable: index                           Number of groups  =          6

                                                Obs per group:
                                                              min =          3
                                                              avg =        3.3
                                                              max =          4
DF method: Kenward-Roger                        DF:           min =       4.00
                                                              avg =       4.67
                                                              max =       5.28

                                                F(7,     4.41)    =      25.93
Log restricted-likelihood = -69.680503          Prob > F          =     0.0023

---------------------------------------------------------------------------------------
         volume_after |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
----------------------+----------------------------------------------------------------
             pressure |
                   5  |   90.16037   65.08291     1.39   0.223    -75.89707    256.2178
                  10  |    368.853   121.7059     3.03   0.039     30.94312    706.7628
                  15  |   1015.671   187.8344     5.41   0.005     506.6321    1524.709
                      |
           approach_d |    -3.8654   28.93499    -0.13   0.899    -77.06403    69.33323
                      |
pressure#c.approach_d |
                   5  |   -12.2128   92.04114    -0.13   0.899    -247.0535    222.6279
                  10  |   234.4865   172.1182     1.36   0.245    -243.3902    712.3632
                  15  |   31.96351   265.6379     0.12   0.910    -687.9255    751.8526
                      |
                _cons |   17.02083   20.46012     0.83   0.441    -34.73841    68.78008
---------------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
index: Unstructured          |
               var(pressure) |    423.062   313.9038      98.81635    1811.253
                  var(_cons) |   190.4463   433.3242       2.20306    16463.38
         cov(pressure,_cons) |  -283.8496   388.1759      -1044.66    476.9611
-----------------------------+------------------------------------------------
               var(Residual) |   1065.404   532.7942      399.7972    2839.153
------------------------------------------------------------------------------
LR test vs. linear model: chi2(3) = 17.49                 Prob > chi2 = 0.0006

Note: LR test is conservative and provided only for reference.

. estat ic

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |        Obs  ll(null)  ll(model)      df         AIC        BIC
-------------+---------------------------------------------------------------
           . |         20         .   -69.6805      12     163.361   175.3098
-----------------------------------------------------------------------------
               Note: N=Obs used in calculating BIC; see [R] BIC note.
Finally, I want to reduce non-significant fixed effect "approach_d" & "pressure#c.approach_d" with "testparm" command.

Code:
. testparm i.pressure#c.approach_d

 ( 1)  [volume_after]5.pressure#c.approach_d = 0
 ( 2)  [volume_after]10.pressure#c.approach_d = 0
 ( 3)  [volume_after]15.pressure#c.approach_d = 0

           chi2(  3) =   28.59
         Prob > chi2 =    0.0000

. testparm approach_d

 ( 1)  [volume_after]approach_d = 0

           chi2(  1) =    0.02
         Prob > chi2 =    0.8937

. testparm i.pressure

 ( 1)  [volume_after]5.pressure = 0
 ( 2)  [volume_after]10.pressure = 0
 ( 3)  [volume_after]15.pressure = 0

           chi2(  3) =  107.60
         Prob > chi2 =    0.0000

Here're questions...

1) With the "testparm" results above, can I just remove "i.pressure#c.approach_d" and get final model for estimates?

Final model(?)

mixed volume_after i.pressure i.pressure#approach_d ||index: pressure, covariance (identity) variance dfmethod(kroger) reml

2) If so, how can I understand my final model? I don't think I can say "approach is not relevant to volume_after".

Code:
Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log restricted-likelihood = -70.546237  
Iteration 1:   log restricted-likelihood = -70.546229  
Iteration 2:   log restricted-likelihood = -70.546229  

Computing standard errors:

Computing degrees of freedom:

Mixed-effects REML regression                   Number of obs     =         20
Group variable: index                           Number of groups  =          6

                                                Obs per group:
                                                              min =          3
                                                              avg =        3.3
                                                              max =          4
DF method: Kenward-Roger                        DF:           min =       4.21
                                                              avg =       6.30
                                                              max =       9.69

                                                F(7,     7.13)    =      29.66
Log restricted-likelihood = -70.546229          Prob > F          =     0.0001

-------------------------------------------------------------------------------------
       volume_after |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
           pressure |
                 5  |   90.16037   58.01232     1.55   0.165     -47.3103     227.631
                10  |    368.853   104.6488     3.52   0.019     92.36201    645.3439
                15  |   1007.622   161.5402     6.24   0.001      594.131    1421.112
                    |
pressure#approach_d |
               0 1  |    -3.8654   32.23463    -0.12   0.907    -76.00165    68.27085
               5 1  |   -16.0782   78.07926    -0.21   0.845    -213.4368    181.2804
              10 1  |   230.6211   145.8365     1.58   0.185    -166.5587    627.8009
              15 1  |   24.77871   227.0594     0.11   0.917    -562.6496     612.207
                    |
              _cons |   17.02083   22.79332     0.75   0.473     -33.9872    68.02887
-------------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
index: Identity              |
         var(pressure _cons) |    303.438   195.4811      85.84362    1072.585
-----------------------------+------------------------------------------------
               var(Residual) |   1255.169   657.3175      449.7154    3503.214
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 15.76         Prob >= chibar2 = 0.0000


3) I just tried Model 4. and compared with Final model (?) with AIC, BIC & "lrtest", which showed that final model is better than model 4.
** "lrtest" was performed without the option "reml" & "dfmethod (kroger)"

Code:
. lrtest model_final model4

Likelihood-ratio test                                 LR chi2(8)  =     22.32
(Assumption: model4 nested in model_final)                 Prob > chi2 =    0.0044
But, it seems that the result of Model 2. showed "approach_d" and "i.pressure#c.approach_d" is not signifincant"

How can I understand this result?

4)
I thought this problem is due to the small sample size,
I tried "Mann-Whitney U test" to
remove "approach" factor before performing linear mixed model....then Model 4 will be my final model.

What are the limitations in this approach compared to the approach above? If I cannot increase my sample size, can I adopt this approach?


Model 4. mixed volume_after i.pressure || index: pressure, covariance (unstruct) variance reml dfmethod(kroger)

Code:
Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log restricted-likelihood = -98.097027  
Iteration 1:   log restricted-likelihood = -97.956087  
Iteration 2:   log restricted-likelihood = -97.946855  
Iteration 3:   log restricted-likelihood = -97.946798  
Iteration 4:   log restricted-likelihood = -97.946784  
Iteration 5:   log restricted-likelihood =  -97.94678  

Computing standard errors:

Computing degrees of freedom:

Mixed-effects REML regression                   Number of obs     =         20
Group variable: index                           Number of groups  =          6

                                                Obs per group:
                                                              min =          3
                                                              avg =        3.3
                                                              max =          4
DF method: Kenward-Roger                        DF:           min =       5.19
                                                              avg =       6.78
                                                              max =       8.83

                                                F(3,     7.27)    =      25.98
Log restricted-likelihood =  -97.94678          Prob > F          =     0.0003

------------------------------------------------------------------------------
volume_after |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    pressure |
          5  |   84.05397   54.81305     1.53   0.160    -40.29687    208.4048
         10  |   486.0962    92.6376     5.25   0.003     250.5715    721.6209
         15  |   1023.594    148.682     6.88   0.000     659.7686     1387.42
             |
       _cons |   15.08813   25.43626     0.59   0.571    -44.90898    75.08525
------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
index: Unstructured          |
               var(pressure) |   446.1804   324.3317      107.3411     1854.62
                  var(_cons) |   445.8629   1055.327      4.309887    46125.04
         cov(pressure,_cons) |  -446.0216    638.208     -1696.886    804.8431
-----------------------------+------------------------------------------------
               var(Residual) |   3436.156   1472.698      1483.397    7959.545
------------------------------------------------------------------------------
LR test vs. linear model: chi2(3) = 11.67                 Prob > chi2 = 0.0086

Note: LR test is conservative and provided only for reference.

. estat ic

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |        Obs  ll(null)  ll(model)      df         AIC        BIC
-------------+---------------------------------------------------------------
           . |         20         .  -97.94678       8    211.8936   219.8594
-----------------------------------------------------------------------------
               Note: N=Obs used in calculating BIC; see [R] BIC note.
Thanks,

Jay

Viewing all articles
Browse latest Browse all 72762

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>