Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 72773

Interpretation of Multinomial Logit Model

$
0
0
Dear Folks,

I am running a multinomial logit model for my research. I am creating a categorical variables (dummies) for industries and for advisor.

First of all, how do we calculate the probability as most of the text books use some calculation or newer version of Stata will give us that probabilities straight away in order for u to interpret. If that's the case then how do we interpret? I used this command for the marginal effects.
margins, dy/dx (*) at means predict (pr outcome (2)))


My independent variable are choice of performance measure to be used either (Outcome 1) ROA exclusively, (Outcome 2) ROE exclusively, (Outcome 3) ROE & ROA jointly and Outcome 4( neither ROE nor ROA


X variables consists of the control variables market capitalization, volatility in ROA, volatility in ROE, industry dummies and some of advisor dummies

margins, dydx(*) atmeans predict(pr outcome (2) dy/dx Std. z P>z [95% Conf. Interval]
return on asset volatility (ROAV) -0.04423 0.026128 -1.69 0.09 -0.09544 0.006978
Return on equity volatility (ROEV) -0.32427 0.19455 -1.67 0.096 -0.70558 0.057037
board committee lb 0.097636 0.071001 1.38 0.169 -0.04152 0.236794
nominatee committee % lnc -0.00397 0.001804 -2.2 0.028 -0.00751 -0.00043
Leverage lev -0.00052 0.000323 -1.6 0.109 -0.00115 0.000116
Price to book ptb 0.00661 0.003876 1.71 0.088 -0.00099 0.014206
Market Cpaitalization lmc -0.04825 0.011329 -4.26 0 -0.07046 -0.02605
Bain (Dummy Advisor) 0.095134 0.070328 1.35 0.176 -0.04271 0.232973
Mckinsey (Dummy Advisor) 0.250295 0.058871 4.25 0 0.13491 0.36568
BG (Dummy Advisor) 0.121386 0.074217 1.64 0.102 -0.02408 0.266848
Towers (Dummy Advisor) 0.118271 0.059905 1.97 0.048 0.000861 0.235682
Mercer (Dummy Advisor) 0.591537 0.135875 4.35 0 0.325226 0.857848
Pwc (Dummy Advisor) 0.119648 0.064528 1.85 0.064 -0.00683 0.246121
Food Service Industry (Dummy) 0.046763 0.03126 1.5 0.135 -0.01451 0.108032
Customer Service Industry (Dummy) 0.047415 0.017949 2.64 0.008 0.012236 0.082594
Car's Industry (Dummy) -0.20241 0.046227 -4.38 0 -0.29301 -0.11181
Genearl Retailers (Dummy) 0.117296 0.02383 4.92 0 0.070591 0.164001
Aerospace Industry (Dummy) 0.084182 0.018928 4.45 0 0.047084 0.12128
Minning Industry (Dummy) -0.16032 0.027304 -5.87 0 -0.21383 -0.1068
Agriculture Industry (Dummy) -0.14285 0.022954 -6.22 0 -0.18784 -0.09786
Food court Industry (Dummy) -0.13902 0.021214 -6.55 0 -0.1806 -0.09744


global ylist
global xlist roev roav lb lnc lev pth lmc Bain (dummy advisor) Mckinsey (dummy advisor ) BG (dummy advisor) Industries dummy)..... etc
* Multinomial logit model with base outcome the most frequent alternative
mlogit $ylist $xlist

margins, dydx(*) atmeans predict(pr outcome(1))
margins, dydx(*) atmeans predict(pr outcome(2))
margins, dydx(*) atmeans predict(pr outcome(3))
margins, dydx(*) atmeans predict(pr outcome(4))



How does it work with the interpretation of dummy Bain advisor? Is it relative to all other advisors ? Do we have to find probabilities or Stata calculates for us?
I also think we can run industry and time effects together?

Here goes the code


Thanks,

Viewing all articles
Browse latest Browse all 72773

Trending Articles